El accidente nuclear de Chernobyl (Ucrania) se produce durante la noche del 25 al 26 de abril de 1986 en el cuarto reactor de la planta nuclear. Se trataba de un reactor nuclear que pertenece al tipo que los soviéticos llaman RMBK-1000, refrigerado por agua y moderado por grafito.
Origen del accidente nuclear: la realización de una prueba
El motivo que desencadenó el accidente nuclear de Chernobyl fue la realización de una prueba programada para el día 25 de abril bajo la dirección de las oficinas centrales de Moscú.
Esta prueba tenía la intención de aumentar la seguridad del reactor. Se trataba de averiguar durante cuánto tiempo la turbina de vapor continuaría generando energía eléctrica una vez cortada la afluencia de vapor.
En caso de avería, las bombas refrigerantes de emergencia requerían de un mínimo de potencia para ponerse en marcha (hasta que se arrancaran los generadores diésel) y los técnicos de la planta desconocían si, una vez cortada la afluencia de vapor, la inercia de la turbina podía mantener las bombas funcionando.
La prueba debía realizarse sin detener la reacción en cadena en el reactor nuclear para evitar un fenómeno conocido como envenenamiento por xenón. Entre los productos de fisión que se producen dentro del reactor, se encuentra el xenón135, un gas muy absorbente de neutrones (los neutrones son necesarios para mantener las reacciones de fisión nuclear en cadena). Mientras está en funcionamiento de modo normal, se producen tantos neutrones que la absorción es mínima, pero cuando la potencia es muy baja o el reactor se detiene, la cantidad de 135Xe aumenta e impide la reacción en cadena por unos días. El reactor se puede reiniciar cuando se desintegra el 135Xe.
Inicio de la prueba
A la una de la madrugada del día 25 de abril, los ingenieros iniciaron la entrada de las barras de control en el núcleo del reactor nuclear con el objetivo de reducir su potencia.
Hacia las 23 horas se habían ajustado los monitores a los niveles más bajos de potencia. Pero el operador se olvidó de reprogramar el ordenador para que se mantuviera la potencia entre 700 MW y 1.000 MW térmicos. Por este motivo, la potencia descendió al nivel de 30 MW.
Con un nivel tan bajo, los sistemas automáticos pueden detener el reactor debido a su peligrosidad y por esta razón los operadores desconectaron el sistema de regulación de la potencia, el sistema de emergencia refrigerante del núcleo y otros sistemas de protección cuando el sistema ya estaba a punto de apagar el reactor nuclear.
Con 30 MW comienza el envenenamiento por xenón. Al darse cuenta se extrajeron las barras de control con el fin de evitarlo aumentado la potencia del reactor nuclear. Los operadores retiraron manualmente demasiadas barras de control. El núcleo del reactor disponía de 170 barras de control. Las reglas de seguridad exigían que hubiera siempre un mínimo de 30 barras bajadas y en esta ocasión dejaron solamente 8.
Dado que los sistemas de seguridad de la planta quedaron inutilizados y se habían extraído casi todas las barras de control, el reactor de la central quedó en condiciones de operación inestable y extremadamente insegura. En ese momento, tuvo lugar un brusco incremento de potencia que los operadores no detectaron a tiempo.
Cuando quisieron bajar de nuevo las barras de control usando el botón de SCRAM de emergencia, estas no respondieron debido a que posiblemente ya estaban deformadas por el calor y las desconectaron para permitirles caer por gravedad.
Finalmente, el combustible nuclear se desintegró y salió de las vainas, entrando en contacto con el agua empleada para refrigerar el núcleo del reactor. A la una y 23 minutos, se produjo una gran explosión, y unos segundos más tarde, una segunda explosión hizo volar por los aires la losa del reactor y las paredes de hormigón de la sala del reactor, lanzando fragmentos de grafito y combustible nuclear fuera de la central, ascendiendo el polvo radiactivo por la atmósfera.
Se estima que la cantidad de material radiactivo liberado fue 200 veces superior al de las bombas atómicas lanzadas sobre Hiroshima y Nagasaki al final de la Segunda Guerra Mundial.
El accidente nuclear fue clasificado como nivel 7 (“accidente nuclear grave”) en la Escala Internacional de Sucesos Nucleares (Escala INES) del Organismo Internacional de la Energía Atómica (OIEA). Se trata del nivel más alto posible, es decir, el accidente de peores consecuencias ambientales.
Consideraciones políticas, sociales y técnicas previas al accidente nuclear de Chernobyl
Aunque el accidente tuvo lugar por un claro error humano, hay que tener en cuenta los factores sociales y políticos de la Unión Soviética en aquel momento. La falta de una estructura social democrática implicaba una ausencia de control de la sociedad sobre la operación de las centrales nucleares y de una “cultura de seguridad”. Posiblemente, el temor de los operadores a no cumplir las instrucciones recibidas desde Moscú, les llevó a desmontar los sistemas de seguridad esenciales para el control del reactor.
Tampoco existía ningún Órgano Regulador de la Seguridad Nuclear que llevase a cabo con autoridad propia e independencia la inspección y evaluación de la seguridad de las instalaciones nucleares.
En cuanto a los aspectos técnicos de seguridad del reactor nuclear, hay que tener en cuenta que en los reactores RMBK no existe ningún sistema de confinamiento que cubra el circuito primario y tampoco hay edificio de contención capaz de retener los productos de fisión en caso de accidente, como ocurre en los reactores occidentales.
Consecuencias del accidente nuclear de Chernobyl
El accidente nuclear dio lugar a un posterior incendio, que no se consiguió apagar hasta el 9 de mayo. Este incendio aumentó los efectos de dispersión de los productos radiactivos, y la energía térmica acumulada por el grafito todavía dio mayor magnitud al propio incendio y a la dispersión atmosférica.
De los productos radiactivos liberados eran especialmente peligrosos el yodo-131 (cuyo período de semidesintegración es de 8,04 días) y el cesio-137 (con un período de semidesintegración de unos 30 años), de los cuales, aproximadamente la mitad, salieron de la cantidad contenida en el reactor nuclear. Además, se estimó que todo el gas xenón fue expulsado al exterior del reactor. Estos productos se depositaron de forma desigual, dependiendo de su volatilidad y de las lluvias durante esos días.
Los más pesados se encontraron en un radio de 110 km, y los más volátiles alcanzaron grandes distancias. Así, además del impacto inmediato en Ucrania y Bielorrusia, la contaminación radiactiva alcanzó zonas de la parte europea de la antigua Unión Soviética, y de Estados Unidos y Japón.
Programa Internacional sobre los Efectos en la Salud del Accidente de Chernobyl
Para determinar los efectos de la radiación sobre la salud de las personas, la Organización Mundial de la Salud desarrolló el IPHECA (Programa Internacional sobre los Efectos en la Salud del Accidente de Chernobyl), de modo que pudieran investigarse las posibles consecuencias sanitarias del accidente. Estas consecuencias incluían efectos relacionados con la ansiedad producida en los habitantes de las zonas más contaminadas como resultado de la evacuación de sus casas, y del miedo a posibles daños futuros en la salud por los efectos biológicos de la radiación. Además, el programa proporcionaba asistencia técnica al sistema sanitario nacional de Bielorrusia, a la Federación Rusa y a Ucrania, para aliviar las consecuencias sanitarias del accidente de Chernobyl.
Los resultados obtenidos con los proyectos piloto IPHECA han mejorado considerablemente el conocimiento científico de los efectos de un accidente radiactivo en la salud humana, para que puedan sentarse las bases de las guías de planificación y del desarrollo de futuras investigaciones.
Las consecuencias inmediatas del accidente sobre la salud de las personas fueron las siguientes:
Según la Agencia de Energía Atómica (NEA) de la OECD, los rangos de dosis de radiación, recibidos por los distintos grupos, fueron los siguientes:
Situación actual y perspectivas de futuro de Chernobyl
Durante los siete meses siguientes al accidente, los restos del reactor nuclear 4 accidentado fueron enterrados por los liquidadores, mediante la construcción de un “sarcófago” de 300.000 toneladas de hormigón y estructuras metálicas de plomo para evitar la dispersión de los productos de la fisión nuclear. En principio, este sarcófago fue una solución provisional y debía estar bajo estricto control dada su inestabilidad a largo plazo, ya que podía producirse un hundimiento.
La recuperación de la zona del accidente y de los productos de limpieza ha dado lugar a una gran cantidad de residuos radiactivos y equipos contaminados, almacenados en cerca de 800 sitios distintos dentro y fuera de la zona de exclusión de 30 km alrededor del reactor nuclear 4 de Chernobyl.
Estos residuos nucleares se encuentran parcialmente almacenados en contenedores o enterrados en trincheras, pudiendo provocar riesgo de contaminación de las aguas subterráneas.
Se ha evaluado que el sarcófago y la proliferación de los sitios de almacenamiento de residuos representan una fuente de radioactividad peligrosa en las áreas cercanas, y algunos expertos de la NEA temían que el hundimiento del reactor accidentado ocasionara graves daños en el único reactor en funcionamiento hasta el 15 de diciembre de 2000, el reactor 3.
Las siguientes imágenes corresponden a el aspecto de abandono que tiene actualmente la ciudad de Prypyat, la ciudad más cercana a la central nuclear.
Conferencia Internacional de Viena
En la Conferencia Internacional de Viena, celebrada en abril de 1996, se concluyó que la rehabilitación total de la zona no era posible debido a la existencia de “puntos calientes” de contaminación, de riesgos de contaminación de aguas subterráneas, de restricciones en los alimentos y de riesgos asociados al posible colapso del sarcófago, dado su deterioro en los años siguientes al accidente. Se apuntó que era necesario llevar a cabo un completo programa de investigación para desarrollar un diseño adecuado que constituyera un sistema de confinamiento seguro desde el punto de vista ecológico, evitando las filtraciones de agua de lluvia en su interior y evitando el hundimiento del sarcófago existente, lo que provocaría el escape de polvo radiactivo y de los restos de combustible nuclear (uranio y plutonio) al medio ambiente.
Programas de ayuda internacional
Ante esta situación, las autoridades y la industria nuclear de los países occidentales están realizando esfuerzos notables para ayudar a los países del Este a mejorar la seguridad de sus reactores, incluyendo los RMBK, y se puede decir que en la actualidad, la situación de estos países es mucho mejor que en el año 1986.
Entre los programas de ayuda de la Unión Europea destacan los programas TACIS (1989) y PHARE (1990). Todas las contribuciones económicas se transfieren a un fondo gestionado por el BERD (Banco Europeo de Reconstrucción y Desarrollo) conocido como “Chernobyl Shelter Fund (CSF)” o “Fondo de Protección de Chernobyl”. El BERD administrará el fondo en nombre de los países contribuyentes y donantes, siendo responsable ante la Asamblea que se reúne 3 o 4 veces al año. En la actualidad, cuenta con 22 miembros, entre ellos la Unión Europea y Ucrania.
El Programa TACIS financió, en 1996, un primer estudio con el objetivo de analizar, en una primera fase, las posibles medidas a corto y largo plazo, para remediar la deplorable situación del sarcófago, y transformarlo finalmente en un emplazamiento seguro.
En un principio, había dos alternativas: enterrar el sarcófago en un bloque de hormigón y construir un nuevo recinto que cubriera completamente el reactor 4 accidentado y el reactor 3.
En mayo de 1997, un grupo de expertos europeos, americanos y japoneses, financiados por el programa, prepararon el SIP (Shelter Implementation Plan - Plan de Ejecución del Sistema de Protección). Los objetivos del plan para convertir el sarcófago en un emplazamiento seguro fueron los siguientes:
Además, el SIP estableció tres hitos a conseguir:
De acuerdo con el programa, el proyecto debía estar finalizado en 2007. Hasta mayo de 2001, se llevaron a cabo las tareas de estabilización y otras medidas a corto plazo, constituyendo la primera fase del SIP. También se realizaron los estudios técnicos preliminares necesarios para determinar una estrategia de mejora de los sistemas de seguridad y preparar, en una segunda fase, el sarcófago como emplazamiento seguro.
En cuanto al tipo de recinto de protección, se decidió finalmente construir un amplio arco de bóveda metálico en cuyo interior quedaría la unidad 4 dañada, ya que ofrecía muchas ventajas en cuanto a la reducción de las dosis de irradiación, la seguridad durante la construcción, la liberación de las actuales estructuras inestables, un mayor espacio para el desmantelamiento y la flexibilidad necesaria para hacer frente a las incertidumbres de retirada del combustible dañado y disperso.
Este arco abovedado metálico, en construcción desde 2002 y hasta 2005, con un coste de 700 millones de dólares, albergará las unidades 3 y 4 de la central de Chernobyl, bajo su muro impermeable de doble pared presurizada internamente y con una cimentación de 27 metros de profundidad.
La unidad 3 de la central de Chernobyl, se paró definitivamente el 15 de diciembre de 2000. Tanto los expertos ucranianos como los extranjeros, fijaron el coste del cierre entre 2.000 y 5.000 millones de dólares, hasta retirar el combustible radiactivo que quede en la central con fecha límite en 2008. Esta decisión completó el cierre total de la instalación nuclear que había dado lugar, el 26 de abril de 1986, a la mayor catástrofe nuclear de la historia de la energía nuclear.
Cierre progresivo de los otros tres reactores nucleares de Chernobyl
A pesar del grave accidente nuclear del reactor nuclear 4 de Chernobyl, debido a las necesidades energéticas los reactores 1, 2 y 3 siguieron en marcha.
En 1991 se incendió una turbina del reactor nuclear número 2. Se pensó en repararla utilizando una de las turbinas del reactor 4 que no resultaron dañadas. Pero por aquel entonces, el contexto político había variado que junto con la presión popular provocó el cierre definitivo del reactor 2.
El reactor 1 dejó de funcionar el 31 de noviembre de 1996, tras graves deficiencias de la refrigeración que dieron lugar a un incidente nuclear de nivel 3 en la Escala INES.
Finalmente, el tercer reactor nuclear de Chernobyl se cerraría poco más tarde, el 15 de diciembre de 2000. El reactor nuclear 3 había tenido ya varios incendios y la estructura estaba afectada por la corrosión. Tras prolongadas negociaciones con el gobierno ucraniano, la comunidad internacional financió los costes del cierre definitivo de la central.
Fuente: Energia Nuclear
https://energia-nuclear.net/accidentes-nucleares/chernobyl
Publicado por:NOTICIAS DE ULTIMA HORA
Por sentarse mucho tiempo en el baño con su celular, se le salieron las 'tripas'
EL MUNDOLos gritos desgarradores de la mamá de Susana al cantar "Libre soy"
MÉXICOAprobado: quitarán licencia de por vida a quien conduzca ebrio y mate a alguien
MÉRIDAHermano del "karateca golpeador" amenaza a familiares de la víctima, denuncian
MÉRIDASurge ‘La Furia Negra’, grupo armado para combatir narcos ¿y las autoridades?
MÉXICOReciclador de basura halla roca en la playa que lo hizo millonario
DIVERSIÓN